

Journal of Molecular Catalysis A: Chemical 207 (2004) 1-3

www.elsevier.com/locate/molcata

Contents

Articles

Stefan V. Kotov, Mariana G. Georgieva, Tsonko M. Kolev

Journal of Molecular Catalysis A: Chemical 207 (2004) 5

Preparation and use of novel molybdenum-containing organic complexes as catalysts in the epoxidation of cyclohexene II. Synthesis and applicability of molybdenum complexes based on squaric acid, 1-phenyl-1-ethanamine and 1,3diamino-2-propanol

Jian Gao, Shun H. Zhong, Ralph A. Zingaro

Journal of Molecular Catalysis A: Chemical 207 (2004) 15

The oxidative coupling polymerization of 2,6dimethylphenol catalyzed by a μ -OCH₃-bridged dicopper(II) complex catalyst A μ -OCH₃-bridged dicopper(II) complex, a model reaction intermediate of the oxidative coupling polymerization of 2,6,-dimethylphenol has been synthesized and characterized by X-ray crystallography. A new reaction mechanism is proposed based on the kinetic investigation.

Kristin Mertins, Alexander Zapf, Matthias Beller

Journal of Molecular Catalysis A: Chemical 207 (2004) 21

Catalytic borylation of *o*-xylene and heteroarenes via C–H activation

Rateb H. Hina, Rasha Kh. Al-Fayyoumi

Journal of Molecular Catalysis A: Chemical 207 (2004) 27

Conversion of dichlorodifluoromethane with hydrogen over Pd/AlF_3 and Ru/AlF_3 prepared by sol-gel method

The catalyzed reaction of CF_2Cl_2 and H_2 has been studied in the gas phase at temperatures 438–538 K. The main two products, CH_2F_2 and CH_4 represented more than 97% of the products. The high dispersion of Pd and Ru over the support are responsible for the high activity and high selectivity in CH_2F_2 . Schematic representation of halogenation/dehalogenation mechanism for CF_2Cl_2 hydrodechlorination. P: two main products, CH_2F_2 and CH_4 , (////): catalyst surface of Pd or Ru supported AlF₃ catalyst prepared by sol–gel method.

$$H = CF_2CI_2 - \frac{k_R}{k_R} P + \frac{CI}{k_R} + H_2 - \frac{k_H}{k_R} + HCI + HF$$

László Óvári, Frigyes Solymosi

Journal of Molecular Catalysis A: Chemical 207 (2004) 35

Determination of acidic centers on supported $Mo_2C\ catalysts$

Deposition of Mo on HZSM-5 caused the consumption of Brönsted acidic OH groups as shown by FTIR spectroscopy. Carburization did not result in regeneration of acidic OH (see figure). Brönsted sites were not found on MoO_3/SiO_2 and carburized MoO_3/SiO_2 . Lewis acidic sites are formed, however, upon the deposition of Mo. Carburization led to stronger Lewis centers.

V.R. Vijayaraghavan, K. Joseph Antony Raj

Journal of Molecular Catalysis A: Chemical 207 (2004) 41

Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves Ethylation of benzene with ethanol in the vapour phase was studied over AlPO₄-5, MAPO-5, ZAPO-5 and MnAPO-5. The products were ethylbenzene (EB), 1,4-diethylbenzene (PDEB), 1,3diethylbenzene (MDEB) and polyalkyl benzenes (1,2,4- and 1,3,5-triethylbenzene, and 1,2,4,5-tetraethylbenzene). MnAPO-5 was found to be more active than the other catalysts.

J. Deutsch, A. Trunschke, D. Müller, V. Quaschning, E. Kemnitz, H. Lieske

Journal of Molecular Catalysis A: Chemical 207 (2004) 51

Acetylation and benzoylation of various aromatics on sulfated zirconia

Anisole, 2-chloroanisole, 3-chloroanisole, mesitylene, *m*-xylene, and toluene were reacted on sulfated zirconia (SZ) as a heterogeneous catalyst with benzoic anhydride, benzoyl chloride, and acetic anhydride to give the resulting benzophenones and acetophenones, respectively.

Contents

Keith J. Stanger, Robert J. Angelici

Journal of Molecular Catalysis A: Chemical 207 (2004) 59

Hydrodefluorination of fluorobenzene catalyzed by rhodium metal prepared from $[Rh(COD)_2]^+BF_4^-$ and supported on SiO₂ and Pd-SiO₂

Reaction of fluorobenzene (PhF) and H_2 catalyzed by Rh-SiO₂(A) gives predominately fluorocyclohexane (CyF) (path a) in heptane and 1,2-dichloroethane (DCE) solvents. In heptane/methanol and heptane/water, hydrodefluorination–hydrogenation to cyclohexane (CyH) occurs exclusively (path bc). The reaction is faster under acidic conditions because the benzene (PhH) intermediate, which inhibits hydrodefluorination (step b) by adsorbing at the same catalyst sites as PhF, undergoes hydrogenation faster at low pH.

